
DO NOW – Geometry Regents Lomac 2014-2015	Date	<u> </u>	due Coordinate Plane: Proof of 8.4 perpendicular slopes
(DN) ON BACK OF PACKET		Name LO:	Per I can use the Pythagorean Theorem to prove that the slopes of perpendicular lines are opposite reciprocals.

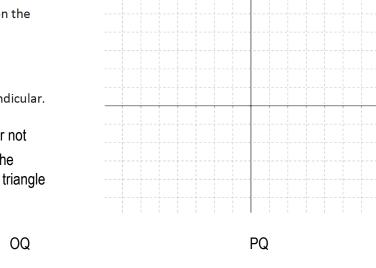
(1) Proving that lines with opposite reciprocal slopes are perpendicular by rotation

(a) What transformation maps triangle ABC to triangle A'B'C'?

(2) The converse of the Pythagorean Theorem (a) If a triangle is a right triangle, then the sides are related by the formula ______. Conversely, if the sides of a triangle are related by the formula a² + b² = c², then the triangle is a ______. (b) Is a triangle with sides 6, 7, and 9 a right triangle? Provide sufficient evidence to support your claim.

(3) Proving that lines with opposite reciprocal slopes are perpendicular by Pythagorean Theorem

calculator


(a)

Use the grid at the right.

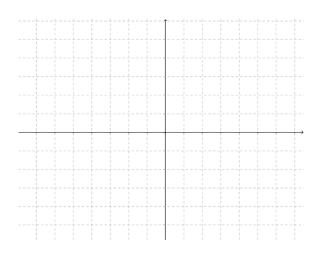
OP

- a. Plot points O(0,0), P(3,-1), and Q(2,3) on the coordinate plane.
- b. Determine whether \overline{OP} and \overline{OQ} are perpendicular. Support your findings. To do part (b), we will determine whether or not

 \overline{OP} and \overline{OQ} are the two shorter sides of the triangle and then determine whether or not triangle OPQ is a right triangle.

(0,0) (3,-1) (0,0) (2,3) (3,-1) (2,3)

(b) Given points X(-5, -3), Y(2, -4) and Z(3,0), are XY and XZ perpendicular? Answer using part (a).


(4) calculator

Proving that lines with opposite reciprocal slopes are perpendicular by Pythagorean Theorem

Prove using the Pythagorean theorem that \overline{AC} is perpendicular to \overline{AB} given A(-2, -2), B(5, -2), and C(-2, 22).

Coordinate Grids: What can we prove with distance (length) and slope?

The points O(0,0), A(-4,1), B(-3,5), and C(1,4) are the vertices of parallelogram OABC. Is this parallelogram a rectangle? Support you answer.

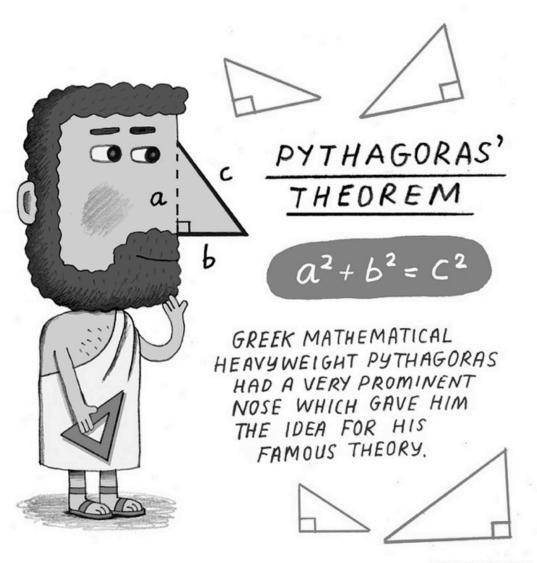
Exit Ticket

ON THE LAST PAGE

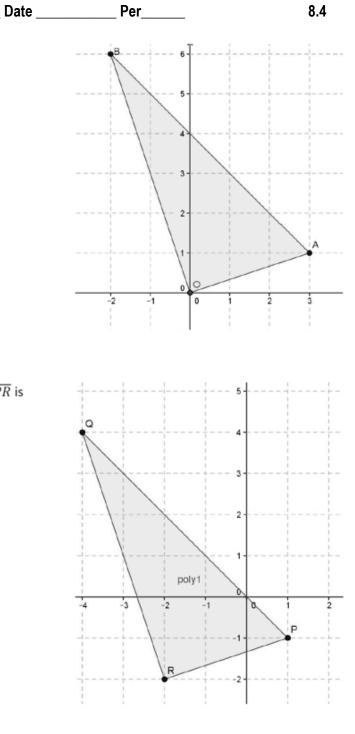
Homework

Provide sufficient evidence for each response.

(1)


Given points O(0,0), S(2,7), and T(7,-2), where \overline{OS} is perpendicular to \overline{OT} , will the images of the segments be perpendicular if the three points O, S, and T are translated four units to the right and eight units up? Explain your answer.

A robot that picks up tennis balls is on a straight path from (8, 6) towards a ball at (-10, -5). The robot picks up a ball at (-10, -5), then turns 90° right. What are the coordinates of a point that the robot can move towards to pick up the last ball?


Gerry thinks that the points (4,2) and (-1,4) form a line perpendicular to a line with slope 4. Do you agree? Why or why not?

allansanders.tumblr.com

Exit Ticket Name_

1. Given points O(0,0), A(3,1), and B(-2,6), prove \overline{OA} is perpendicular to \overline{OB} .

2. Given points P(1, -1), Q(-4, 4), and R(-2, -2), prove \overline{PR} is perpendicular to \overline{QR} without the Pythagorean theorem.

DO NOW	Name		Date	Per	8.4
--------	------	--	------	-----	-----

A triangle has side lengths 10, 6, and 8. Is the triangle a right triangle? What might you do to check to see if it is a right triangle?

http://tube.geogebra.org/student/m149362

http://tube.geogebra.org/student/m7358 http://tube.geogebra.org/student/m21284 http://tube.geogebra.org/student/m126542 http://tube.geogebra.org/student/m133148